
How we teach
computing
12 pedagogy principles

Lead with concepts

 Support pupils in the acquisition of knowledge,

through the use of key concepts, terms, and

vocabulary, providing opportunities to build a

shared and consistent understanding. Glossaries,

concept maps , and displays, along with regular

recall and revision, can support this approach.

Work together

Encourage collaboration, speci昀椀cally using
pair programming and peer instruction,

and also structured group tasks. Working

together stimulates classroom dialogue,

articulation of concepts, and development

of shared understanding.

Get hands-on

Use physical computing and making activities

that offer tactile and sensory experiences to

enhance learning. Combining electronics and

programming with arts and crafts (especially

through exploratory projects) provides pupils

with a creative, engaging context to explore

and apply computing concepts.

Make concrete

Bring abstract concepts to life with real-

world, contextual examples and a focus on

interdependencies with other curriculum

subjects. This can be achieved through the use

of unplugged activities, proposing analogies,

storytelling around concepts, and 昀椀nding
examples of the concepts in pupils’ lives.

Create projects

Use project-based learning activities to provide

pupils with the opportunity to apply and

consolidate their knowledge and understanding.

Design is an important, often overlooked

aspect of computing. Pupils can consider how

to develop an artefact for a particular user or

function, and evaluate it against a set of criteria.

Add variety

Provide activities with different levels of direction,

scaffolding, and support that promote active

learning, ranging from highly structured to more

exploratory tasks. Adapting your instruction to

suit different objectives will help keep all pupils

engaged and encourage greater independence.

Structure lessons

Use supportive frameworks when planning

lessons, such as PRIMM (Predict, Run, Investigate,

Modify, Make) and Use-Modify-Create. These

frameworks are based on research and ensure

that differentiation can be built in at various

stages of the lesson.

Read and explore code 昀椀rst
When teaching programming, focus 昀椀rst
on code ‘reading’ activities, before code

writing. With both block-based and text-based

programming, encourage pupils to review and

interpret blocks of code. Research has shown

that being able to read, trace, and explain code

augments pupils’ ability to write code.

Challenge misconceptions

Use formative questioning to uncover

misconceptions and adapt teaching to address

them as they occur. Awareness of common

misconceptions alongside discussion, concept

mapping, peer instruction, or simple quizzes can

help identify areas of confusion.

Unplug, unpack, repack

Teach new concepts by 昀椀rst unpacking complex
terms and ideas, exploring these ideas in

unplugged and familiar contexts, then repacking

this new understanding into the original

concept. This approach (semantic waves) can

help pupils develop a secure understanding of

complex concepts.

Model everything

Model processes or practices — everything

from debugging code to binary number

conversions — using techniques such as

worked example s and live codin g. Modelling

is particularly bene昀椀cial to novices, providing
scaffolding that can be gradually taken away.

Foster program
comprehension

Use a variety of activities to consolidate

knowledge and understanding of the

function and structure of program s, including

debugging, tracing, and Parson ’s Problems.

Regular comprehension activities will help

secure understanding and build connections

with new knowledge.

ncce.io/pedagogy

Find out more about

our principles and

add some or all

to your personal

pedagogy toolkit.

